On Ev-Degree and Ve-Degree Topological Properties of Tickysim Spiking Neural Network
نویسندگان
چکیده
منابع مشابه
On ev-degree and ve-degree topological indices
Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...
متن کاملOn ev-degree and ve-degree topological indices
Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we define the ve...
متن کاملPredicting Some Physicochemical Properties of Octane Isomers: A Topological Approach Using ev-Degree and ve-Degree Zagreb Indices
Topological indices have important role in theoretical chemistry for QSPR researches. Among the all topological indices the Randić and the Zagreb indices have been used more considerably than any other topological indices in chemical and mathematical literature. Most of the topological indices as in the Randić and the Zagreb indices are based on the degrees of the vertices of a connected graph....
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملm-polynomial and degree-based topological indices
let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2019
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2019/8429120